DRACOCEPHALOSIDE - A NEW FLAVONOID GLYCOSIDE FROM DRACOCEPHALUM THUMIFLORUM L.

V. I. Litvinenko and T. A. Sergienko

Khimiya Prirodnykh Soedinenii, Vol. 1, No. 2, pp. 137-138, 1965.

The thymeflower dragonhead (Dracocephalum thymiflorum L,), which belongs to the family Labiatae, is an annual-biennial herbaceous plant which is widely distributed on the territory of the Soviet Union [1].

The dragonheads are of considerable interest for the national economy as good fodder-providing, honey-yielding, and essential-oil-bearing plants [2,3]; however, their chemical composition has been studied extremely inadequately.

In the present paper we describe a chemical investigation of the flavonoid composition of thymeflower dragonhead collected in a pine wood near Kharkov*.

The plant was extracted with 50% methanol. The extract was evaporated to an aqueous residue, and the flavonoids were purified and separated on a column of polyamide sorbent. One of the flavonoids isolated in this way proved to be a new glycoside of luteolin and has been called dracocephaloside.

Comparative characteristics of diacocephatoside,									
		Luteolin-5-							
Ducus	Descendent, the	glucoside	Luteolin-7	Luteolin-4					
Properties	Dracocephatoside	(galuteolin)	glucoside [5]	glucoside [4]					
		[4]							
Mp , C	243-245	280	255-258	177-178					
[<i>a</i>]D	-103.0°(c 0.33,	-	-100°(c 0.5,						
	pyridine-methanol-		pyridine-methanol						
	water, 1:1:1)		1:1)						
λ_{max} , m μ (UV region)	256, 268, 350	-	255, 264, 350	255, 334					
Formula	C ₂₁ H ₂₀ O ₁₁								
Mol, wt.	448, 0	448.0	448.0	448.0					
Rf value in 15% CH ₃ COOH	0. 20-0. 22	-	0.20-0.22	<u> -</u>					
*BAW (4:1:2)	0.53-0.55	_	0.53-0.55	0.51					
Qualitative reactions									
Bryant's cyanidin reaction [6]	Orange		Orange						
	coloration		coloration						
	(in water)		(in water)						
With ammoniacal silver				· ·					
nitrate [7]	Negative	-	Positive	Negative					
With lead acetate [8]	Negative	Yellow	Yellow	Negative					
		precipitate	precipitate						
with ferric chloride	Green	Negative	Green	Green					
	coloration		coloration	coloration					

TABLE 1 Comparative characteristics of dracocephaloside.

*Translator's note: probably butanol-acetic acid-water.

We have compared the physicochemical properties of the glycosides investigated with those of known monoglucosides of luteolin (Table 1). From this it can be stated that dracocephaloside is a monoglucoside with free hydroxy groups in the 5- and 4' - positions. The hydroxy group in the 4' position is probably free, since a 4' glucoside should exhibit hypsochromy to 334 m μ in the UV spectrum. On the other hand, the negative reactions with an ammoniacal solution of silver nitrate [7] and with lead acetate make it possible to assume that one of the o-hydroxy groups in ring B is

*The species of the plant was determined by candidate of biological sciences I. G. Zoz (KhNIKhFI) [Kharkov Chemical and Pharmaceutical Research Institute].

substituted. In order to determine the position of the carbohydrate substituent and of the free hydroxy groups more accurately, we have carried out a spectroscopic investigation in the UV region using ionizing and complex-forming reagents [9] (Table 2).

As is evident from Table 2, the following free hydroxy groups are present in the glycoside and the aglycone: in the 7- position (from the bathochromic displacement of the long-wave band by 25 mµ under the influence of sodium acetate), in the 5- position (from the bathochromy with aluminum chloride), and in the 4'- position (from the bathochromy with sodium ethoxide). However, the presence in the UV spectrum of the glycoside and the aglycone (alcoholic solution) of two maxima in band II serves as an indication of the presence of substituents in the 3'- and 4'- positions [9]. Thus, the data obtained confirm the assumption of the existence in the glycoside of free phenolic groups in the 5-, 7-, and 4'- positions and a carbohydrate substituent in the 3'- position.

		Dracocephaloside λ_{max} , mµ			Aglycone λ_{max} , m μ				
Medium	Band	Displace-	Band	Displace-	Band	Displace-	Band	Displace-	
	Wedium	1	ment of	II	ment of	- 1	ment of	II	ment of
			band I		band II		band I		band II
	10^{-5} M solution in absolute ethanol	350	-	268(256)		350	-	267(253)	-
	Same + sodium acetate	375	25	260	-8	375	25	270	3
	Same + boric acid and sodium acetate	375	25	260	-8	375	25	261	-6
	Same + sodium ethoxide	390	40	270	+2	410	60	271	4
	Same + aluminum chloride	410	60	270	+2	410	60	270	3

TABLE 2									
Spectroscopic characteristics	of	dracocephaloside	and	its	aglycone.				

Acidic and enzymatic hydrolysis of the glycoside gave luteolin and D-glucose. Enzymatic splitting of the glycoside with an amylolytic enzyme preparation from the mould Aspergillus oryzae [10], and also a comparison of the molecular rotation with that of phenyl glucosides give grounds for assuming that the D-glucose is present in the glucoside in the pyranose form and is linked to the aglycone by a β -glycosidic bond. The aglycone is identical with luteolin on the basis of its physicochemical properties, its chromatographic behavior, and a comparison of the IR spectra.

Consequently, dracocephaloside is 5, 7, 3', 4'-tetrahydroxyflavone-3'-\beta-D-glucopyranoside.

REFERENCES

1. Flora of the U.S.S.R. [in Russian], Moscow and Leningrad, 20, 444-470, 1954.

2. I. V. Larin, et al., Fodder Plants of Meadows and Pastures of the U.S.S.R. [in Russian], Moscow and Leningrad, 3, 300, 1956.

3. N. K. Bychennikova, Labiatae of Krasnoyarsk Territory and their Significance for the National Economy [in Russian], Author's Abstract of Candidate's Dissertation, Tomsk (1963).

4. F. M. Dean, Naturally Occurring Oxygen Ring Compounds, London, Butterworths, 280, 1963.

5. L. I. Dranik, V. T. Chernobai and D. G. Kolesnikov, Med. prom. SSSR, no. 5, 23, 1964.

6. E. T. Bryant, J. Amer. Chem. Soc., 39, 481, 1950.

7. R. M. Harowitz, J. Org. Chem., 22, 1733, 1957.

8. Biochemical Methods for the Analysis of Plants [in Russian], Moscow, 453, 1960.

9. T. A. Geissman, The Chemistry of Flavonoid Compounds, Pergamon Press, 107, 1962.

10. P. I. Gvozdyak and V. I. Litvinenko, Med. prom. SSSR, no. 5, 16, 1964.

1 December 1964

Kharkov Chemical and Pharmaceutical Research Institute

Kharkov Pharmaceutical Institute